Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering.
نویسندگان
چکیده
Tissue engineering scaffolds are highly engineered structures that accommodate cells, facilitate their expression, and resorb to facilitate regeneration of tissue. A new technique for producing controlled pore shape and pore size interconnectivity offers promise for application as a tissue engineering scaffold. Salt particles were spheroidized in a flame and sintered to provide an interconnecting salt template. The salt template was filled with a carbonated fluorapatite powder and a polylactic polymer to produce a composite scaffold. It was found that a higher pore space is possible with the use of spherical and larger salt particle sizes. This technique can produce scaffolds with good interconnectivity and be suitable for producing pore size graded bodies.
منابع مشابه
Fabrication of Porous Hydroxyapatite-Gelatin Scaffolds Crosslinked by Glutaraldehyde for Bone Tissue Engineering
In this study, to mimic the mineral and organic components of natural bone, hydroxyapatite[HA] and gelatin[GEL] composite scaffolds were prepared using the solvent-casting method combined with a freeze drying process. Glutaraldehyde[GA] was used as a cross linking agent and sodium bisulfite was used as an excess GA discharger. Using this technique, it is possible to produce scaffolds with mecha...
متن کاملFabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering
Background: engineering new bone tissue with cells and a synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). Methods: in this study, to mimic the mineral and organic component of natural bone, hydroxapatite (HA) and gelatin (GEL) composite scaffolds were prepared. The raw mater...
متن کاملBiodegradable polymer scaffolds with well-defined interconnected spherical pore network.
Scaffolding plays pivotal role in tissue engineering. In this work, a novel processing technique has been developed to create three-dimensional biodegradable polymer scaffolds with well-controlled interconnected spherical pores. Paraffin spheres were fabricated with a dispersion method, and were bonded together through a heat treatment to form a three-dimensional assembly in a mold. Biodegradab...
متن کاملBiodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.
Biodegradable polymers and bioactive ceramics are being combined in a variety of composite materials for tissue engineering scaffolds. Materials and fabrication routes for three-dimensional (3D) scaffolds with interconnected high porosities suitable for bone tissue engineering are reviewed. Different polymer and ceramic compositions applied and their impact on biodegradability and bioactivity o...
متن کاملA mechanical evaluation of micro-HA/CS composite scaffolds with interconnected spherical macropores
BACKGROUND In the process of bone defective reparation and engineered bone tissue construction, osteoblasts are adhered to the surface of the scaffold materials and impart the external mechanical load to the osteoblasts. So, the dynamic mechanical property of the scaffolds play an important role in the bone tissue repair and it is valuable to research. Material type and the architectural design...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 25 20 شماره
صفحات -
تاریخ انتشار 2004